Wednesday, 30 November 2011

Supenova

Supernova
I
INTRODUCTION
Supernova, violent explosion that occurs when a large star uses up its supply of fuel, collapses under its own weight, and explodes. A shock wave from this catastrophic event expands into space, followed by a shell of material from the star’s atmosphere. The material blown off contains chemical elements created throughout the star’s lifetime. Debris from supernovas enriches the chemistry of interstellar space with material that becomes part of new stars and planets. See also Astronomy; Interstellar Matter.
Supernovas are rare phenomena—fewer than five supernovas in our Milky Way galaxy have been visible from Earth in the last 1,000 years. Some supernovas can be bright enough to see with the naked eye during the day. They may continue glowing for several weeks or even months after the explosion. Thick clouds of interstellar dust hide some supernovas, but astronomers can detect those by the radio waves that the supernova emits. See also Radio Astronomy.
Supernovas occur in all galaxies, not just the Milky Way. Supernovas that occur outside the Milky Way are bright enough to stand out against the other stars in the galaxy. However, they are usually not bright enough to pick out without a telescope. A typical supernova can produce as much light and other forms of electromagnetic radiation as billions of stars. Electromagnetic radiation is energy carried through space by electric and magnetic waves. The length of these waves determines the properties of the radiation. In addition to the radiation energy a supernova produces, the force of the explosion releases ten times more energy into the motion of the particles that the explosion blows outward. These tiny particles, called neutrinos, carry away a hundred times more energy than the electromagnetic radiation. Astronomers discover about ten supernovas in distant galaxies each year.
II
FORMATION OF A SUPERNOVA
The mass of a star determines whether it will end its life in a supernova explosion. During the courses of their lifetimes, all stars convert hydrogen to helium in thermonuclear fusion reactions in their cores (see Nuclear Energy: Nuclear Fusion). Thermonuclear fusion reactions occur when the intense heat and gravitational force in a star’s nucleus force hydrogen atoms together. The atoms merge, or fuse together, creating helium atoms and releasing large amounts of energy in the form of electromagnetic radiation and heat. Massive stars have faster rates of fusion than smaller stars, so large stars may use up their fuel faster. After most of the hydrogen is used up, a star goes into a carbon-building phase, in which nuclear fusion turns the helium into carbon. After the helium is exhausted, most stars gradually cool until they no longer emit radiation.
When a star eight or ten times more massive than the Sun exhausts its helium, however, the nuclear burning cycle is far from complete. In these stars, the carbon core shrinks under its own weight, and its temperature rises high enough to fuse carbon into oxygen, neon, silicon, sulfur, and finally, iron.
Iron is the most stable element formed in stars, and even the intense heat and pressure of a stellar nucleus cannot force iron atoms to fuse into heavier elements. The thermonuclear process at the star’s core is essentially complete. At this point, the outward pressure produced by the reactions can no longer balance the inward gravitational attraction between atoms. As a result, all the core can do is collapse under its own weight. As it does so, the star implodes, transforming gravitational energy into kinetic energy, or energy of motion. The core of the star collapses in on itself, but as it does so, it transfers to the star’s atmosphere kinetic energy that sends the atmosphere exploding outward from the star’s core. The particles of the star’s atmosphere begin moving rapidly away from the star, tearing apart the star’s atmosphere.
Astronomers know of several variations of supernovas, but they all fall into one of two main types. The two kinds of supernovas are called Type I and Type II and are differentiated mostly by the presence of hydrogen in their debris. Type I supernovas tend to be older stars that have completely exhausted their hydrogen. Type II supernovas come from younger stars that have used up the hydrogen in their nucleus but have large amounts of hydrogen in their atmospheres. Astronomers can measure what elements exist in a star by examining its light because atoms of different elements emit and absorb electromagnetic radiation at different wavelengths. By separating a star’s light into its wavelengths, astronomers can tell which wavelengths are missing or especially bright, and therefore what elements are present in the star (see Spectroscopy).
III
AFTER THE SUPERNOVA
All supernova explosions produce clouds of debris and release huge amounts of energy, but Type I supernovas typically completely destroy their parent stars, while Type II explosions usually leave the stellar core behind. The stellar atmosphere of both types expands into space and appears as luminous clouds years, or even centuries, later. These clouds are called supernova remnants. The Crab Nebula is one of the most spectacular supernova remnants.
The fate of the stellar core left behind by a Type II supernova depends on the mass of the original star. Normal atoms are made up of positively charged particles called protons, particles with no electric charge called neutrons, and much smaller, negatively charged particles called electrons. If the original star had a mass about ten times that of the Sun, the core collapses with such force that its protons and electrons combine to form neutrons. The resulting body is composed entirely of neutrons, so astronomers call it a neutron star. Most neutron stars created by supernovas are pulsars. Pulsars are neutron stars that spin rapidly as they emit powerful beacons of radio waves. From Earth, these spinning beacons appear as pulses of radiation.
If the mass of the original star is greater than about ten solar masses, the nuclear forces that hold up a neutron star are too weak to resist the core’s gravitational pull. The core continues to collapse past the neutron star stage. It crushes itself until its mass is concentrated into a volume of space smaller than a typical city on Earth. At this point, the speed at which an object would have to travel to escape the core’s gravitation, like a space probe leaving Earth, is greater than the speed of light. No kind of matter, or even radiation, can reach this speed and escape, so these astronomical objects are invisible to the eye or to normal telescopes. Not only can matter not escape, but the collapsed core pulls in any matter or radiation that comes too close. Astronomers call this kind of an object a black hole because no light can escape its gravitational pull.
IV
STUDYING SUPERNOVAS
Chinese astronomers recorded supernovas visible from Earth as far back as ad 185. Probably the most well-known ancient supernova is the one that created the Crab Nebula in 1054. From Chinese and Japanese records, astronomers estimate that it was about 20 times as bright as any other star in the night sky. It was visible even during the day for several weeks after it first appeared.
The last time a supernova in the Milky Way galaxy became visible from Earth was October 1604. It was bright enough to be seen at night with the naked eye for more than a year. German mathematician Johannes Kepler made detailed observations of the supernova and carefully measured its position. Since then, astronomers have not seen any supernovas in the Milky Way. A number of supernovas have appeared in other galaxies, however.
One of the most important supernovas of the 20th century, and the brightest in the sky of the northern hemisphere since 1937, burst into view on March 28, 1993, in the galaxy M 81. Astronomers noticed the strange behavior of the parent star—a huge red-colored star called a red giant—before it exploded and were able to track its changes as it became a supernova.
On February 24, 1987, one of the closest supernovas in centuries occurred in the Large Magellanic Cloud (see Magellanic Clouds), only 160,000 light-years from Earth. A light-year is a measure of distance equal to the distance that light travels in a year, or 9.5 trillion km (5.9 trillion mi). This supernova was visible from the southern hemisphere. Since this eruption, scientists have learned that its parent star may have once been a hot blue star with a mass about 20 times that of the Sun. The star probably swelled into a red giant star before it exploded.
Scientists are continually searching for and studying supernovas. Astronomers learn about the final evolutionary paths of massive stars from supernovas. In addition, supernovas give clues to the origin of the chemical elements that make up stars, planets, and even life. A supernova in a distant galaxy can even help astronomers measure the distance to the galaxy. To do this, astronomers examine the radiation emitted by the shell of material from the star’s atmosphere and use the information they gain to develop models of how wide the shell is. They then compare the width of their model to the apparent width of the shell as viewed from Earth to estimate the distance to the supernova remnant and to its parent galaxy.

Contributed By:
Dennis L. Mammana

No comments:

Post a Comment